Notes of Linear Algebra Review
Matrix
\(\mathbb{R} ^ {3 \times 2}\):
\[ \begin{bmatrix} a & b \newline c & d \newline e & f \newline \end{bmatrix} \]
1 | A = [1, 2; 3, 4; 5, 6] |
\(A_{ij}\): element in the ith row and jth column of matrix \(A\)
1 | A(3, 2) |
Vector
\(\mathbb{R} ^ {3}\):
\[ \begin{bmatrix} x \newline y \newline z \newline \end{bmatrix} \]
1 | v = [1; 2; 3] |
\(v_i\): element in the ith row of the vector \(v\)
1 | v(3) |
Addition
\[ \begin{bmatrix} a & b \newline c & d \newline \end{bmatrix} + \begin{bmatrix} w & x \newline y & z \newline \end{bmatrix} = \begin{bmatrix} a + w & b + x \newline c + y & d + z \newline \end{bmatrix} \]
1 | A = [1, 2, 3; 4, 5, 6] |
Scalar Multiplication
\[ \begin{bmatrix} a & b \newline c & d \newline \end{bmatrix} \cdot x = \begin{bmatrix} a \cdot x & b \cdot x \newline c \cdot x & d \cdot x \newline \end{bmatrix} \]
1 | A = [1, 2, 3; 4, 5, 6] |
Matrix-Vector Multiplication
\[ \begin{bmatrix} a & b \newline c & d \newline e & f \newline \end{bmatrix} \cdot \begin{bmatrix} x \newline y \newline \end{bmatrix} = \begin{bmatrix} a \cdot x + b \cdot y \newline c \cdot x + d \cdot y \newline e \cdot x + f \cdot y \newline \end{bmatrix} \]
1 | A = [1, 2, 3; 4, 5, 6; 7, 8, 9] |
Matrix-Matrix Multiplication
\[ \begin{bmatrix} a & b \newline c & d \newline e & f \newline \end{bmatrix} \cdot \begin{bmatrix} w & x \newline y & z \newline \end{bmatrix} = \begin{bmatrix} a \cdot w + b \cdot y & a \cdot x + b \cdot z \newline c \cdot w + d \cdot y & c \cdot x + d \cdot z \newline e \cdot w + f \cdot y & e \cdot x + f \cdot z \newline \end{bmatrix} \]
1 | A = [1, 2; 3, 4; 5, 6] |
Matrix Multiplication Properties
Not Commutative: \(A B \neq B A\) in general
Associative: \((A B) C = A (B C)\)
Identity: \(I\) (or \(I_{n \times n}\)) \(s.t.\) \(A I = I A = A\)
\[ I_{3 \times 3} = \begin{bmatrix} 1 & 0 & 0 \newline 0 & 1 & 0 \newline 0 & 0 & 1 \newline \end{bmatrix} \]
1 | I = eye(3) |
Inverse and Transpose
Transposition: \(A^T\) \(s.t.\) \(A_{ij} = (A^T)_{ji}\)
1 | A = [1, 2, 3; 4, 5, 6; 7, 8, 9] |
Inverse: \(A^{-1}\) \(s.t.\) \(A A^{-1} = A^{-1} A = I\)
1 | A = [1, 2, 0; 0, 5, 6; 7, 0, 9] |
Matrices that don't have an inverse are singular or degenerate
Pseudoinverse: \(A^{+}\) \(s.t.\) \(A A^{+} A = A\), \(A^{+} A A^{+} = A^{+}\)
1 | A = [1, 2, 0; 0, 5, 6; 7, 0, 9] |